首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Application of a characterized difference-frequency laser source to carbon monoxide trace detection
Authors:Alireza Khorsandi  Zahra Shabani  Monireh Ranjbar  S Ali Hoseinzadeh Salati
Institution:Department of Physics, University of Isfahan, 81746-73441 Isfahan, Iran
Abstract:A tunable continuous wave (cw) mid-infrared (MIR) laser based on difference-frequency generation (DFG) in a 1.5-cm long AgGaS2 nonlinear crystal for trace gas detection is reported. Two visible and near-infrared diode lasers were used as pump and signal sources. The MIR-DFG laser was tunable in a wavelength range of 4.75 μm-4.88 μm. The phase-matching (PM) condition was non-critically achieved by adjusting the temperature of the crystal for fixed pairs of input pump and signal wavelengths. The required PM temperatures of the generated MIR-DFG wavelengths have been calculated by using three sets of recent Sellmeier equations and the temperature-dispersion equations of AgGaS2 given by Willer U, et al. (Willer U, Blanke T and Schade W 2001 Appl. Opt. 40 5439). Then the calculated PM temperatures are compared with the experimental values. The performance of the MIR-DFG laser is shown by the trace detection of the P(16) carbon monoxide (12C16O) absorption line in a laboratory-fabricated absorption cell. The enhanced sensitivity of about 0.6 × 10-4 was obtained through the long path absorption provided by consecutive reflections between coated cylindrical mirrors of a constructed cell.
Keywords:difference-frequency generation  AgGaS2 crystal  multi-pass cell
本文献已被 CNKI 维普 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号