首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The falling needle viscometer a new technique for viscosity measurements
Authors:N A Park  Thomas F Irvine Jr
Institution:(1) Mechanical Engineering Dept., State University of New York, 11794 Stony Brook, N.Y., USA
Abstract:A new type of viscometer, the ldquoFalling Needle Viscometerrdquo (FNV) has been developed. It has several advantages over the better known ldquoFalling Ball Viscometerrdquo (FBV) including better control over the trajectory and terminal velocity and a ldquowall correctionrdquo which is an integral part of the analytical solution.A Stokes' type solution for the FNV is presented which is compared with experimental measurements made on Glycerol. Experiments were also conducted with a Falling Ball Viscometer and Weissenberg Rheogoniometer using the same fluid and a comparison made among the three systems.Glycerol viscosities measured with the FNV agreed with those measured by the FBV and Weissenberg Rheogoniometer within approximately one percent. It is concluded that the Falling Needle Viscometer is a useful device that in some situations is superior to the Falling Ball Viscometer.
Das Nadelfall-Viskosimeter, eine neue Technik zur Zähigkeitsmessung
Zusammenfassung Es wurde ein neues Gerät zur Zähigkeitsmessung, as Nadelfall-Viskosimeter (FNV) entwickelt. Gegenüber dem bekannteren Kugelfall-Viskosimeter (FBV) besitzt es einige Vorteile wie eine bessere Kontrolle über die Bahnkurve und die Endgeschwindigkeit sowie eine ldquorWandkorrekturldquo, die Bestandteil der analytischen Lösung ist.Für das FNV wird eine Lösung vom Stokes'schen Typ vorgestellt und mit experimentellen Meßergebnissen an Glycerin verglichen. Meßwerte am selben Fluid mit Hilfe eines FBV und eines Weissenberg-Rheogoniometers erlaubten einen Vergleich zwischen den drei Systemen.Die mit dem FNV gemessenen Zähigkeiten stimmten mit den anderen Werten innerhalb etwa 1% überein. Daraus wird geschlossen, daß das FNV ein nützliches Gerät ist, das dem FBV auf einigen Gebieten überlegen ist.

Nomenclature

Roman letters a Radius of needle or sphere (cm) - b Radius of container (cm) - b + Ratio of container to needle diameterb/a - C w Wall correction factor of sphere - d Diameter of needle or sphere (cm) - ECF End correction factor of a finite needle with hemisphere tips - g Gravitational constant - G + Dimensionless number 
$$\left( {\frac{{b^{ + 2} (Inb^ +   - 1) + Inb^ +   + 1}}{{b^{ + 2}  + 1}}} \right)$$
- L Total needle length minus one diameter (cm) - Lprime Total length of needle (cm) - L + Total needle length minus one diameter over diameter-L/d - L+prime Total length to diameter of needle - p Pressure (N/m2) - p + Dimensionless number 
$$\left( {\frac{{\Delta pa^2 }}{{2\mu LU_\infty  }}} \right)$$
- L +prime/b + Total needle length to diameter of system - r Radial coordinate (cm) - r + Dimensionless radial distance(r/a) - Re Reynolds number 
$$\left( {\frac{{dU_\infty  }}{v}} \right)$$
or 
$$\frac{{2(b - a)U_\infty  }}{{v(b^{ + 2}  - 1)}}$$
- u Velocity in the system length direction (cm/s) - u + Dimensionless velocity (u/U infin) - U t Measured terminal velocity of needle or sphere (cm/s) - U infin Terminal velocity of sphere in an unbounded fluid or terminal velocity of a long enough needle (cm/s) - U infin + Dimensionless number 
$$\left( {\frac{{\mu U_\infty  }}{{\varrho _f gd^2 }}} \right)$$
- T Temperature (°C) - z Coordinate in container length direction (cm) Greek letters 
$$\dot \gamma $$
Shear rate (l/s) - Deltap Pressure difference - mgr Dynamic viscosity (Ns/m2) - ngr Kinematic viscosity (m2/s) - rhov f Density of fluid (kg/m3) - rhov s Density of needle or sphere (kg/m3) - rhov + Dimensionless density 
$$\left( {\frac{{\varrho _s  - \varrho _f }}{{\varrho _f }}} \right)$$
Dedicated to Professor E. R. G. Eckert on the occasion of his 80th birthday
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号