首页 | 本学科首页   官方微博 | 高级检索  
     

基于灰色关联聚类的协同过滤推荐算法
引用本文:陶维成,党耀国. 基于灰色关联聚类的协同过滤推荐算法[J]. 运筹与管理, 2018, 27(1): 84-88. DOI: 10.12005/orms.2018.0013
作者姓名:陶维成  党耀国
作者单位:1.南京航空航天大学 经济与管理学院,江苏 南京 210016; 2.芜湖职业技术学院 信息工程学院,安徽 芜湖 241006
基金项目:国家自然科学基金项目(71071077,71171116,71371098);安徽省高等学校质量工程项目(2012zy087,2012sjjd047,2013jyxm317)
摘    要:针对协同过滤推荐系统具有数据的高稀疏,高维度,数据量大的特点,本文将灰色关联聚类与协同过虑推荐算法相结合,构建了灰色关联聚类的协同过滤推荐算法,将其应用到协同过滤推荐系统中,以解决数据具有高稀疏高维度的特性情况下的个性化推荐质量问题。首先,定义了推荐系统中的用户项目评分矩阵,用户灰色绝对关联度,用户灰色相似度,用户灰色关联聚类。然后,给出了灰色关联聚类的协同过滤推荐算法的计算方法和步骤,同时给出了评价推荐质量方法。最后,将本文算法与基于余弦,相关分析及修正的余弦等协同过滤推荐算法在大小不同的数据集下进行了实验,实验表明灰色关联聚类的协同过滤推荐算法相较于传统的协同过滤推荐方法具有推荐质量高,计算量小,对数据大小要求不高等优点,同时在推荐系统的冷启动,稳定性和计算效率方面也具有一定的优势。

关 键 词:灰色关联聚类  协同过滤  推荐质量  灰色相似度  
收稿时间:2015-12-18

Collaborative Filtering Recommendation Algorithm Based on Grey Incidence Clustering
TAO Wei-Cheng,DANG Yao-guo. Collaborative Filtering Recommendation Algorithm Based on Grey Incidence Clustering[J]. Operations Research and Management Science, 2018, 27(1): 84-88. DOI: 10.12005/orms.2018.0013
Authors:TAO Wei-Cheng  DANG Yao-guo
Affiliation:1.College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; 2.Wuhu Institute of Technology, Wuhu 241006, China
Abstract:In view of the collaborative filtering recommendation system having the characteristics of high data sparse, high dimension, mass data, combining grey incidence clustering with collaborative filtering recommendation algorithm, we have proposed collaborative filtering recommendation algorithm based on grey incidence clustering which can be applied to collaborative filtering recommendation system for resolving the problem of high sparse data, high-dimensional data, mass data and personalized recommendation quality. Firstly, we present the definitions of user item rating matrix in recommendation system, user grey absolute correlation, user grey similarity, user grey incidence clustering. Secondly, computational method and procedure of the collaborative filtering recommendation algorithm with grey incidence clustering, and its evaluation have been presented, and furthermore, the evaluation recommendation quality method is also been given. Lastly, our algorithm compares with the collaborative filtering recommendation algorithm, such as based on cosine, correlation analysis and modified cosine in different scale of data sets, experiment results indicate that our algorithm, compared with the traditional collaborative filtering recommendation method, has the advantages of the high recommended quality, small amount of calculation and the data size requirement being not high. In addition, our algorithm has some advantages in the cold start, stability and computational efficiency of the recommended system.
Keywords:grey incidence clustering  collaborative filtering  recommended quality  grey similarity  
本文献已被 CNKI 等数据库收录!
点击此处可从《运筹与管理》浏览原始摘要信息
点击此处可从《运筹与管理》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号