首页 | 本学科首页   官方微博 | 高级检索  
     检索      


High dimensional model representation for stochastic finite element analysis
Authors:R Chowdhury  S Adhikari
Institution:School of Engineering, Swansea University, Singleton Park, Swansea, SA2 8PP Wales, UK
Abstract:This paper presents a generic high dimensional model representation (HDMR) method for approximating the system response in terms of functions of lower dimensions. The proposed approach, which has been previously applied for problems dealing only with random variables, is extended in this paper for problems in which physical properties exhibit spatial random variation and may be modelled as random fields. The formulation of the extended HDMR is similar to the spectral stochastic finite element method in the sense that both of them utilize Karhunen–Loève expansion to represent the input, and lower-order expansion to represent the output. The method involves lower dimensional HDMR approximation of the system response, response surface generation of HDMR component functions, and Monte Carlo simulation. Each of the low order terms in HDMR is sub-dimensional, but they are not necessarily translating to low degree polynomials. It is an efficient formulation of the system response, if higher-order variable correlations are weak, allowing the physical model to be captured by the first few lower-order terms. Once the approximate form of the system response is defined, the failure probability can be obtained by statistical simulation. The proposed approach decouples the finite element computations and stochastic computations, and consecutively the finite element code can be treated as a black box, as in the case of a commercial software. Numerical examples are used to illustrate the features of the extended HDMR and to compare its performance with full scale simulation.
Keywords:Function approximation  High dimensional model representation  Karhunen&ndash  Loè  ve expansion  Random field  Stochastic finite element
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号