首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of residence time on the NOx emissions of premixed ammonia-methane-air swirling flames at elevated pressure
Institution:1. KAUST Clean Combustion Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia;2. Saudi Aramco, Dhahran, 31311, Saudi Arabia;3. KAUST Clean Combustion Research Center, Mechanical Engineering Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Kingdom of Saudi Arabia
Abstract:In this study, a bespoke single-stage swirl burner was used to experimentally investigate the effects of residence time on emissions from premixed ammonia-methane-air flames. The residence time was altered in two ways: by modifying the combustion chamber's length or by modifying the swirl number. Exhaust emissions of O2, CO2, CO, NO, NO2, and N2O were measured at an absolute pressure of 2 bar for equivalence ratios between 0.50 and 0.95 and ammonia fractions in the fuel blend between 0 and 100%. Spatial distributions of NO and OH radicals were also imaged using PLIF inside the combustion chamber at different heights above the nozzle. Data shows that increasing residence time can further advance chemical reactions, as evidenced by a reduction in O2 concentration in the exhaust. Increasing the swirl number reduces emissions of NO, NO2, and N2O more efficiently than tripling the chamber's length. However, a decrease in the combustion efficiency may be responsible for a fraction of this NOx reduction when the swirl number is increased for some equivalence ratios. NO emissions are not modified when the chamber's length is increased, which is consistent with the fact that the NO-LIF signal does not decay when the distance from the nozzle increases. Therefore, NO formation is somehow restricted to within the main reaction zone of the swirling flame, that is, the zone whose height does not exceed 60 mm for this burner. Conversely, tripling the chamber's length reduces the concentrations of NO2 and N2O. This reduction is not reflected in a measurable increase in NO concentration because NO is present in much larger quantities than NO2 and N2O in flames examined here. Consistent with the fact that OH promotes NO formation via fuel-NOx pathways, a positive correlation is found between NO- and OH-LIF intensities.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号