首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Flame structure and burning velocity of flames propagating in binary iron aerosols
Institution:Mechanical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
Abstract:A numerical study was performed for binary dispersed iron aerosols in air using different particle sizes with constant average particle size. The effects of particle size and density of the two aerosols on flame structure and speed are systematically investigated. Varying the amount of small and big particles results in separated and overlapped flame fronts. For higher values of particle size ratio (ratio between the size of big and small particles) and density of small particles, flame fronts are observed to overlap. The flame speed of the binary mixture is compared with the mono-dispersed case and the difference is analyzed for different particle size ratios. The addition of a small fraction of small particles in the binary mixture is found to result in a substantial increase in the flame speed if the particle size ratio is large. Detailed analyses on the variation of the total amount of fuel shows the particle size ratio determines the equivalence ratio at which the maximum flame speed occurs. The maximum flame speed as a function of equivalence ratio was observed to move from the lean to the rich side for particle size ratio sufficiently large enough.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号