首页 | 本学科首页   官方微博 | 高级检索  
     


MUTATION INDUCTION BY AND MUTATIONAL INTERACTION BETWEEN MONOCHROMATIC WAVELENGTH RADIATIONS IN THE NEAR-ULTRAVIOLET AND VISIBLE RANGES
Authors:Rex M.  Tyrrell
Affiliation:Instituto de Biofisica, Centro de Ciencias da Saúde (Bloco G) Universidade Federal do Rio de Janeiro, Rio de Janeiro, R.J., Brazil
Abstract:Abstract— The induction of mutations (reversion to tryptophan independence) by various UV (254, 313, 334 and 365 nm) and visible (405 and 434 nm) wavelengths was measured in exponential phase populations of Escherichia coli B/r thy trp and B/r thy trp uvrA by assay of irradiated populations on semi-enriched media. No mutations were induced in the repair proficient strain at wavelengths longer than 313 nm. Mutations were induced in the excisionless strain at wavelengths as long as 405 nm but less than expected from the known amount of DNA damage induced. Irradiation at the longer wavelengths (434, 405, 365 and 334 nm) suppressed the appearance of 254- or 313-nm-induced mutations in the repair competent strain but not in the excision deficient strain. The relative dose-requirement for mutation suppression was related to the relative efficiency of these wavelengths in inducing growth delay. These results suggest that the growth delay induced by near-UV and visible wavelengths allows more time for the 'error-free" excision repair process to act on the potentially mutagenic lesions induced by 254- and 313-nm radiations, thereby reducing the mutation frequency observed in the repair-proficient strain. The level of near-UV mutation induced in the excision deficient strain is lower than expected from the DNA damage known to be induced. It is possible that near-UV radiation induces a class of lethal lesions that are not susceptible to error-prone repair.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号