首页 | 本学科首页   官方微博 | 高级检索  
     


Crystal structure, microstructure and reducibility of LaNixCo1−xO3 and LaFexCo1−xO3 Perovskites (0<x≤0.5)
Authors:S. Ivanova  E. Zhecheva  R. Stoyanova  H. Fuess
Affiliation:a Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
b Darmstadt University of Technology, Institute of Materials Science, Structure Research, Petersenstr. 23, D-64287, Germany
c Institute of Catalysis, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
Abstract:Nickel and iron substituted LaCoO3 with rhombohedrally distorted perovskite structure were obtained in the temperature range of 600-900 °C by thermal decomposition of freeze-dried citrates and by the Pechini method. The crystal structure, morphology and defective structure of LaCo1−xNixO3 and LaCo1−xFexO3 were characterized by X-ray diffraction and neutron powder diffraction, TEM and SEM analyses and electron paramagnetic resonance spectroscopy. The reducibility was tested by temperature programmed reduction with hydrogen. The products of the partial and complete reduction were determined by ex-situ XRD experiments. The replacement of Co by Ni and Fe led to lattice expansion of the perovskite structure. For perovskites annealed at 900 °C, there was a random Ni, Fe and Co distribution. The morphology of the perovskites does not depend on the Ni and Fe content, nor does it depend on the type of the precursor used. LaCo1−xNixO3 perovskites (x>0.1) annealed at 900 °C are reduced to Co/Ni transition metal and La2O3 via the formation of oxygen deficient Brownmillerite-type compositions. For LaCo1−xNixO3 annealed at 600 °C, Co/Ni metal, in addition to oxygen-deficient perovskites, was formed as an intermediate product at the initial stage of the reduction. The interaction of LaCo1−xFexO3 with H2 occurs by reduction of Co3+ to Co2+ prior to the Fe3+ ions. The reducibility of Fe-substituted perovskites is less sensitive towards the synthesis procedure in comparison with that of Ni substituted perovskites.
Keywords:Cobalt perovskites   Synthesis   Reduction   X-ray diffraction   Neutron diffraction   Electron paramagnetic resonance
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号