首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Lattice crossover and mixed valency in the LaCo1−xRhxO3 solid solution
Authors:Jun Li  Kyei-Sing Kwong  Arthur W Sleight
Institution:a Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003, USA
b National Energy Technology Laboratory-Albany, US DOE, Albany, OR 97321, USA
Abstract:The full LaCo1−xRhxO3 solid solution was investigated utilizing structural, electrical transport, magnetic, and thermal conductivity characterization. Strong evidence for at least some conversion of Rh3+/Co3+ to Rh4+/Co2+ is found in both structural and electrical transport data. The crystal structure is that of a rhombohedrally distorted perovskite over the range 0.0≤x≤0.1. The common orthorhombic distortion of the perovskite structure is found over the range 0.2≤x≤1.0. A crossover of all three orthorhombic cell edges occurs at x=0.5 giving the appearance of a cubic structure, which actually remains orthorhombic. The octahedra in the orthorhombic structure must be distorted for x values less than 0.5, and the observed distortion suggests orbital ordering for Co2+. Electrical resistivity measurements as a function of temperature show semiconducting-like regions for all compositions. There is a steady increase in electrical resistivity as the Rh content increases. Large positive thermopower values are generally obtained above 475 K. With increasing Rh substitution there is a decrease in thermal conductivity, which slowly rises with increasing temperature due to increased electrical conductivity. The electronic part of the thermal conductivity is suppressed significantly upon Rh substitution. A thermoelectric figure-of-merit (ZT) of about 0.075 has been achieved for LaCo0.5Rh0.5O3 at 775 K, and is expected to reach 0.15 at 1000 K.
Keywords:Cobalt oxides  Rhodium oxides  Perovskites  Solid solutions  Thermoelectrics  Magnetism
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号