首页 | 本学科首页   官方微博 | 高级检索  
     


DFT study of Co-C bond cleavage in the neutral and one-electron-reduced alkyl-cobalt(III) phthalocyanines
Authors:Galezowski Wlodzimierz  Kuta Jadwiga  Kozlowski Pawel M
Affiliation:Department of Chemistry, A. Mickiewicz University, Grunwaldzka 6, Poznan, Poland.
Abstract:Density functional theory (DFT) has been applied to the analysis of the structural and electronic properties of the alkyl-cobalt(III) phthalocyanine complexes, [CoIIIPc]-R (Pc = phthalocyanine, R = Me or Et), and their pyridine adducts. The BP86/6-31G(d) level of theory shows good reliability for the optimized axial bond lengths and bond dissociation energies (BDEs). The mechanism of the reductive cleavage was probed for the [CoIIIPc]-Me complex which is known as a highly effective methyl group donor. In the present analysis, which follows a recent study on the reductive Co-C bond cleavage in methylcobalamin (J. Phys. Chem. B 2007, 111, 7638-7645), it is demonstrated that addition of an electron and formation of the pi-anion radical [CoIII(Pc*)]-Me- significantly lowers the energetic barrier required for homolytic Co-C bond dissociation. Such BDE lowering in [CoIII(Pc*)]-Me- arises from the involvement of two electronic states: upon electron addition, a quasi-degenerate pi*Pc state is initially formed, but when the cobalt-carbon bond is stretched, the unpaired electron moves to a sigma*Co-C state and the final cleavage involves the three-electron (sigma)2(sigma*)1 bond. As in corrin complexes, the pi*Pc-sigma*Co-C states crossing does not take place at the equilibrium geometry of [CoIII(Pc*)]-Me- but only when the Co-C bond is stretched to approximately 2.3 A. The DFT computed Co-C BDE of 23.3 kcal/mol in the one-electron-reduced phthalocyanine species, [CoIII(Pc*)]-Me-, is lowered by approximately 37% compared to the neutral Py-[CoIIIPc]-Me complex where BDE = 36.8 kcal/mol. A similar comparison for the corrin-containing complexes shows that a DFT computed BDE of 20.4 kcal/mol for [CoIII(corrin*)]-Me leads to approximately 45% bond strength reduction, in comparison to 37.0 kcal/mol for Im-[CoIII(corrin)]-Me+. These results suggest some preference by the alkylcorrinoids for the reductive cleavage mechanism.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号