首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Filling boron nitride nanotubes with metals
Authors:D Golberg  F-F Xu  Y Bando
Institution:(1) Advanced Materials Laboratory and Nanomaterials Laboratory, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan, JP
Abstract:The authors’ endeavors over the last few years with respect to boron nitride (BN) nanotube metal filling are reviewed. Mo clusters of 1–2 nm in size and FeNi Invar alloy (Fe ∼60 at. %; Ni ∼40 at. %) or Co nanorods of 20–70 nm in diameter were embedded into BN nanotube channels via a newly developed two-stage process, in which multi-walled C nanotubes served as templates for the BN multi-walled nanotube synthesis. During cluster filling, low-surface-tension and melting-point Mo oxide first filled a C nanotube through the open tube ends, followed by fragmentation of this filling into discrete clusters via O2 outflow and C→BN conversion within tubular shells at high temperature. During nanorod filling, C nanotubes containing FeNi or Co nanoparticles at the tube tips were first synthesized by plasma-assisted chemical vapor deposition on FeNi Invar alloy or Co substrates, respectively, and, then, the nanomaterial was heated to the melting points of the corresponding metals in a flow of B2O3 and N2 gases. During this second stage, simultaneous filling of nanotubes with a FeNi or Co melt through capillarity and chemical modification of C tubular shells to form BN nanotubes occurred. The synthesized nanocomposites were analyzed by scanning and high-resolution transmission electron microscopy, electron diffraction, electron-energy-loss spectroscopy and energy-dispersive X-ray spectroscopy. The nanostructures are presumed to function as ‘nanocables’ having conducting metallic cores (FeNi, Co, Mo) and insulating nanotubular shields (BN) with the additional benefit of excellent environmental stability. Received: 10 October 2002 / Accepted: 25 October 2002 / Published online: 10 March 2003 RID="*" ID="*"Corresponding author. Fax: +81-298/51-6280, E-mail: golberg.dmitri@nims.go.jp
Keywords:PACS: 61  46  +w  68  37  Lp  68  55  Jk  64  70  Nd
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号