首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Giant strain-sensitivity of acoustic energy dissipation in solids containing dry and saturated cracks with wavy interfaces
Authors:Zaitsev V Yu  Matveev L A
Institution:Division of Hydrophysics and Hydroacoustics, Institute of Applied Physics, Russian Academy of Sciences, Uljanova St 46, Nizhny Novgorod 603950, Russia. vyuzai@hydro.appl.sci-nnov.ru
Abstract:Mechanisms of acoustic energy dissipation in heterogeneous solids attract much attention in view of their importance for material characterization, nondestructive testing, and geophysics. Due to the progress in measurement techniques in recent years, it has been revealed that rocks can demonstrate extremely high strain sensitivity of seismoacoustic loss. In particular, it has been found that strains of order 10(-8) produced by lunar and solar tides are capable of causing variations in the seismoacoustic decrement on the order of several percent. Some laboratory data (although obtained for higher frequencies) also indicate the presence of very high dissipative nonlinearity. Conventionally discussed dissipation mechanisms (thermoelastic loss in dry solids, Biot and squirt-type loss in fluid-saturated ones) do not suffice to interpret such data. Here the dissipation at individual cracks is revised taking into account the influence of wavy asperities of their surfaces quite typical of real cracks, which can drastically change the values of the relaxation frequencies and can result in giant strain sensitivity of the dissipation without the necessity of assuming the presence of unrealistically thin (and, therefore, unrealistically soft) cracks. In particular, these mechanisms suggest interpretation for observations of pronounced amplitude modulation of seismo-acoustic waves by tidal strains.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号