首页 | 本学科首页   官方微博 | 高级检索  
     


Cationic conjugated polyelectrolytes-triggered conformational change of molecular beacon aptamer for highly sensitive and selective potassium ion detection
Authors:Kim Boram  Jung In Hwan  Kang Mijeong  Shim Hong-Ku  Woo Han Young
Affiliation:Department of Nano Fusion Technology, Pusan National University, Miryang 627-706, Republic of Korea.
Abstract:We demonstrate highly sensitive and selective potassium ion detection against excess sodium ions in water, by modulating the interaction between the G-quadruplex-forming molecular beacon aptamer (MBA) and cationic conjugated polyelectrolyte (CPE). The K(+)-specific aptamer sequence in MBA is used as the molecular recognition element, and the high binding specificity of MBA for potassium ions offers selectivity against a range of metal ions. The hairpin-type MBA labeled with a fluorophore and quencher at both termini undergoes a conformational change (by complexation with CPEs) to either an open-chain form or a G-quadruplex in the absence or presence of K(+) ions. Conformational changes of MBA as well as fluorescence (of the fluorophore in MBA) quenching or amplification via fluorescence resonance energy transfer from CPEs provide clear signal turn-off and -on in the presence or absence of K(+). The detection limit of the K(+) assays is determined to be ~1.5 nM in the presence of 100 mM Na(+) ions, which is ~3 orders of magnitude lower than those reported previously. The successful detection of 5'-adenosine triphosphate (ATP) with the MBA containing an ATP-specific aptamer sequence is also demonstrated using the same sensor scheme. The scheme reported herein is applicable to the detection of other kinds of G-rich aptamer-binding chemicals and biomolecules.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号