首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Molecular and vibrational structure of tetroxo d0 metal complexes in their excited states. a study based on time-dependent density functional calculations and Franck-Condon theory
Authors:Jose Linta  Seth Michael  Ziegler Tom
Institution:Department of Chemistry, University of Calgary, University Drive 2500, Calgary AB T2N-1N4, Canada.
Abstract:We have applied time dependent density functional theory to study excited state structures of the tetroxo d(0) transition metal complexes MnO(4)(-), TcO(4)(-), RuO(4), and OsO(4). The excited state geometry optimization was based on a newly implemented scheme Seth et al. Theor. Chem. Acc. 2011, 129, 331]. The first excited state has a C(3v) geometry for all investigated complexes and is due to a "charge transfer" transition from the oxygen based HOMO to the metal based LUMO. The second excited state can uniformly be characterized by "charge transfer" from the oxygen HOMO-1 to the metal LUMO with a D(2d) geometry for TcO(4)(-), RuO(4), and OsO(4) and two C(2v) geometries for MnO(4)(-). It is finally found that the third excited state of MnO(4)(-) representing the HOMO to metal based LUMO+1 orbital transition has a D(2d) geometry. On the basis of the calculated excited state structures and vibrational modes, the Franck-Condon method was used to simulate the vibronic structure of the absorption spectra for the tetroxo d(0) transition metal complexes. The Franck-Condon scheme seems to reproduce the salient features of the experimental spectra as well as the simulated vibronic structure for MnO(4)(-) generated from an alternative scheme Neugebauer J. J. Phys. Chem. A 2005, 109, 1168] that does not apply the Franck-Condon approximation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号