首页 | 本学科首页   官方微博 | 高级检索  
     


Freezing light with cold atoms
Authors:Mark D. Havey
Affiliation:1. Department of Physics , Old Dominion University , Norfolk, VA, 23529, USA mhavey@odu.edu
Abstract:The impact of disorder and localisation in electronic conduction was introduced more than half a century ago by Philip Anderson. In a much broader context of disorder-mediated wave dynamics it remains an important research area, and surprises abound. Meanwhile, research in ultracold atomic physics has led to phenomenally detailed elucidation of properties, including changes in phase, of quantum degenerate Bosonic and Fermionic gases. For example, beautiful experiments have recently demonstrated, in quasi one-dimensional systems, Anderson localisation of matter waves. In this brief essay, we describe and discuss research on wave localisation in the context of ultracold atomic physics, with a particular emphasis on light localisation in ultracold and high-density atomic gases. Essential ideas are reviewed, along with the current experimental status of the field, and promising avenues for future research are discussed.
Keywords:ultracold atomic physics  light localisation  Anderson localisation  quantum optics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号