首页 | 本学科首页   官方微博 | 高级检索  
     

在线时间序列搜索的风险补偿模型
引用本文:张文明,程永席,茹少峰. 在线时间序列搜索的风险补偿模型[J]. 运筹学学报, 2019, 23(3): 126-134. DOI: 10.15960/j.cnki.issn.1007-6093.2019.03.009
作者姓名:张文明  程永席  茹少峰
作者单位:1. 西北大学经济与管理学院, 西安 710127;2. 西安交通大学管理学院, 西安 710049;3. 机械制造系统工程国家重点实验室, 西安 710049
基金项目:陕西省教育厅专项科研计划项目(No.17JK0785),国家自然科学基金(No.11771346)
摘    要:对于在线时间序列搜索问题,在假设对未来信息有一定的预期下,提出了在线时间序列搜索的风险补偿模型,进一步研究了模型的求解,给出了模型的一个最优策略,并通过数值计算讨论了最优策略的补偿函数随参数变化规律.数值实验结果表明,随着风险容忍度的增大与预期区间下限的增大,补偿函数均增大且趋于收敛;随着预期概率的增大与预期区间上限的减少,补偿函数分别增大.研究结果丰富了在线时间序列搜索的理论且具有实际应用价值.

关 键 词:在线问题  时间序列搜索  风险补偿  概率预期  
收稿时间:2019-03-11

The risk-reward model of the online time series search problem
ZHANG Wenming,CHENG Yongxi,RU Shaofeng. The risk-reward model of the online time series search problem[J]. OR Transactions, 2019, 23(3): 126-134. DOI: 10.15960/j.cnki.issn.1007-6093.2019.03.009
Authors:ZHANG Wenming  CHENG Yongxi  RU Shaofeng
Affiliation:1. School ofEconomics & Management, Northwest University, Xi'an 710127, China;2. School of Management, Xi'an Jiaotong University, Xi'an 710049, China;3. StateKey Lab for Manufacturing Systems Engineering, Xi'an 710049, China
Abstract:The risk-reward model of the time series search problem is promoted under the assumption that the future can be partially forecasted, where an optimal strategy is presented. Moreover, the variations of the reward function with the parameters are studied by numerical computation, which show that the reward first increases and then is convergent as the risk tolerance and the lower limit of the expectation interval rise, respectively, and increase as the expectation probability rises and the upper limit of the expectation interval declines, respectively. The results enrich the theory of online time series search and are valuable in application.
Keywords:online problem  time series search  risk-reward  probabilistic forecast  
本文献已被 CNKI 等数据库收录!
点击此处可从《运筹学学报》浏览原始摘要信息
点击此处可从《运筹学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号