首页 | 本学科首页   官方微博 | 高级检索  
     

基于RBF网络信道均衡器
引用本文:张烨,吴建华,段荣行. 基于RBF网络信道均衡器[J]. 南昌大学学报(理科版), 2006, 30(1): 68-72
作者姓名:张烨  吴建华  段荣行
作者单位:南昌大学,电子科学工程系,江西,南昌,330029
摘    要:在数字通信系统中为了克服信道畸变引起的码间干扰,在接收端必须采用信道均衡技术。在本文中,我们将RBF网络用作均衡器。采用最近邻聚类和直接判决算法来调整隐藏层中心,然后再用LMS算法调整输出层的系数。该算法可以实现在线学习,根据相应的准则增加,删除隐藏层节点。算法事先不必确定隐藏层的节点个数。模拟结果显示,RBF网络均衡器能够正确地将信号从有噪信道中恢复出来,在计算机模拟仿真中其性能与理想贝叶斯均衡器相当。

关 键 词:RBF网络  信道均衡  LMS算法  最近邻聚类算法
文章编号:1006-0464(2006)01-0068-05
收稿时间:2004-12-20
修稿时间:2004-12-20

Study on Channel Equalization Based on RBF Networks
ZHANG Ye,WU Jian-hua,DUAN Rong-xing. Study on Channel Equalization Based on RBF Networks[J]. Journal of Nanchang University(Natural Science), 2006, 30(1): 68-72
Authors:ZHANG Ye  WU Jian-hua  DUAN Rong-xing
Affiliation:Department of Electronics, Nanchang University, Nanehang 330029, China
Abstract:High-speed communication channels are often impaired by channel inter-symbol interference and additive noise.Adaptive equalizers are required in these communication systems to obtain reliable data transmission.In this paper,we use RBF networks for channel equalization.The RBF networks' learning algorithm is usually decoupled in two steps.First,clustering is performed on the input vectors to determine the unit centers,and then the output weights are adjusted.In our works,the first step is accomplished using the unsupervised nearest clustering algorithm(NNCA) or the decision-directed algorithm and then the output weights are adjusted using the supervised least mean square(LMS) algorithm.This algorithm uses online learning,and has the capability to grow and prune the RBF network's hidden neurons ensuring a parsimonious network structure.The proposed method eliminates the need for channel order estimation for simulation,Results showing that the RBF network equalizer has the ability to correctly classify the transmitted data form the noise corrupted channel output.The performance of the RBF network and the Bayesian equalizer are seen to be indistinguishable.
Keywords:RBF network    channel equalization    LMS algorithm    NNCA algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号