首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Stokes flow past an assemblage of axisymmetric porous spherical shell-in-cell models: effect of stress jump condition
Authors:E I Saad
Institution:1. Department of Mathematics, Faculty of Science, Damanhour University, Damanhour, Egypt
2. Department of Mathematics, Faculty of Science and Humanities, Shaqra University, Dawadmi, Saudi Arabia
Abstract:The quasisteady axisymmetrical flow of an incompressible viscous fluid past an assemblage of porous concentric spherical shell-in-cell model is studied. Boundary conditions on the cell surface that correspond to the Happel, Kuwabara, Kvashnin and Cunningham/Mehta-Morse models are considered. At the fluid-porous interfaces, the stress jump boundary condition for the tangential stresses along with continuity of normal stress and velocity components are employed. The Brinkman’s equation in the porous region and the Stokes equation for clear fluid are used. The hydrodynamic drag force acting on the porous shell by the external fluid in each of the four boundary conditions on the cell surface is evaluated. It is found that the normalized mobility of the particles (the hydrodynamic interaction among the porous shell particles) depends not only on the permeability of the porous shells and volume fraction of the porous shell particles, but also on the stress jump coefficient. As a limiting case, the drag force or mobility for a suspension of porous spherical shells reduces to those for suspensions of impermeable solid spheres and of porous spheres with jump.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号