首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The direct observation of secondary radical chain chemistry in the heterogeneous reaction of chlorine atoms with submicron squalane droplets
Authors:Liu Chen-Lin  Smith Jared D  Che Dung L  Ahmed Musahid  Leone Stephen R  Wilson Kevin R
Institution:Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Abstract:The reaction of Cl atoms, in the presence of Cl(2) and O(2), with sub-micron squalane particles is used as a model system to explore how surface hydrogen abstraction reactions initiate chain reactions that rapidly transform the chemical composition of an organic particle. The heterogeneous reaction is measured in a photochemical flow tube reactor in which chlorine atoms are produced by the photolysis of Cl(2) at 365 nm. By monitoring the heterogeneous reaction, using a vacuum ultraviolet photoionization aerosol mass spectrometer, the effective reactive uptake coefficient and the distributions of both oxygenated and chlorinated reaction products are measured and found to depend sensitively upon O(2), Cl(2), and Cl concentrations in the flow reactor. In the absence of O(2), the effective reactive uptake coefficient monotonically increases with Cl(2) concentration to a value of ~3, clearly indicating the presence of secondary chain chemistry occurring in the condensed phase. The effective uptake coefficient decreases with increasing O(2) approaching a diffusion corrected value of 0.65 ± 0.07, when 20% of the total nitrogen flow rate in the reactor is replaced with O(2). Using a kinetic model it is found that the amount of secondary chemistry and the product distributions in the aerosol phase are controlled by the competitive reaction rates of O(2) and Cl(2) with alkyl radicals. The role that a heterogeneous pathway might play in the reaction of alkyl radicals with O(2) and Cl(2) is investigated within a reasonable range of reaction parameters. These results show, more generally, that for heterogeneous reactions involving secondary chain chemistry, time and radical concentration are not interchangeable kinetic quantities, but rather the observed reaction rate and product formation chemistry depends sensitively upon the concentrations and time evolution of radical initiators and those species that propagate or terminate free radical chain reactions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号