首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Gibbs Measures Over Locally Tree-Like Graphs and Percolative Entropy Over Infinite Regular Trees
Authors:Tim Austin  Moumanti Podder
Institution:1.Mathematics Department,University of California, Los Angeles,Los Angeles,USA;2.School of Mathematics,Georgia Institute of Technology,Atlanta,USA
Abstract:Consider a statistical physical model on the d-regular infinite tree \(T_{d}\) described by a set of interactions \(\Phi \). Let \(\{G_{n}\}\) be a sequence of finite graphs with vertex sets \(V_n\) that locally converge to \(T_{d}\). From \(\Phi \) one can construct a sequence of corresponding models on the graphs \(G_n\). Let \(\{\mu _n\}\) be the resulting Gibbs measures. Here we assume that \(\{\mu _{n}\}\) converges to some limiting Gibbs measure \(\mu \) on \(T_{d}\) in the local weak\(^*\) sense, and study the consequences of this convergence for the specific entropies \(|V_n|^{-1}H(\mu _n)\). We show that the limit supremum of \(|V_n|^{-1}H(\mu _n)\) is bounded above by the percolative entropy \(H_{\textit{perc}}(\mu )\), a function of \(\mu \) itself, and that \(|V_n|^{-1}H(\mu _n)\) actually converges to \(H_{\textit{perc}}(\mu )\) in case \(\Phi \) exhibits strong spatial mixing on \(T_d\). When it is known to exist, the limit of \(|V_n|^{-1}H(\mu _n)\) is most commonly shown to be given by the Bethe ansatz. Percolative entropy gives a different formula, and we do not know how to connect it to the Bethe ansatz directly. We discuss a few examples of well-known models for which the latter result holds in the high temperature regime.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号