False Positive and False Negative Effects on Network Attacks |
| |
Authors: | Yilun Shang |
| |
Affiliation: | 1.School of Mathematical Sciences,Tongji University,Shanghai,China |
| |
Abstract: | Robustness against attacks serves as evidence for complex network structures and failure mechanisms that lie behind them. Most often, due to detection capability limitation or good disguises, attacks on networks are subject to false positives and false negatives, meaning that functional nodes may be falsely regarded as compromised by the attacker and vice versa. In this work, we initiate a study of false positive/negative effects on network robustness against three fundamental types of attack strategies, namely, random attacks (RA), localized attacks (LA), and targeted attack (TA). By developing a general mathematical framework based upon the percolation model, we investigate analytically and by numerical simulations of attack robustness with false positive/negative rate (FPR/FNR) on three benchmark models including Erd?s-Rényi (ER) networks, random regular (RR) networks, and scale-free (SF) networks. We show that ER networks are equivalently robust against RA and LA only when FPR equals zero or the initial network is intact. We find several interesting crossovers in RR and SF networks when FPR is taken into consideration. By defining the cost of attack, we observe diminishing marginal attack efficiency for RA, LA, and TA. Our finding highlights the potential risk of underestimating or ignoring FPR in understanding attack robustness. The results may provide insights into ways of enhancing robustness of network architecture and improve the level of protection of critical infrastructures. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|