首页 | 本学科首页   官方微博 | 高级检索  
     


Theoretical Study and Experimental Analysis on 2-(1-Ethyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-2-oxoacetic Acid (3) Using the DFT Approach
Authors:Shimaa Abdel Halim
Affiliation:1.Department of Chemistry, Faculty of Education,Ain Shams University,Cairo,Egypt
Abstract:Riley oxidation of 3-acetyl-4-hydroxyquinolin-2(1H)-one (1) with selenium dioxide furnished the unexpected product 2-(1-ethyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-2-oxoacetic acid (3). The expected product 2-(1-ethyl-4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl)-2-oxoacetaldehyde (2) was excluded based on the spectral data. The elemental analysis and spectral data (IR, and 1H NMR) was used to deduce the structure of compound 3. Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations of the electronic structure at the B3LYP/6-311G (d,p) level of theory have been employed for compound 3 to investigated its geometry, linear polarizability 〈Δα〉, first-order hyperpolarizability 〈β〉, natural bonding orbital (NBO), molecular electrostatic potential contours (MEP and ESP), electrophilicity, and UV–Vis spectra in both ethanol and dioxane solvents. The geometrical and energetic parameters have been extensively investigated to reveal the reason behind the selective formation of compound 3, rather than the expected product 2. FT-IR spectra in the solid phase were recorded for compound 3. The thermo-chemical parameters, harmonic vibration frequencies, and the equilibrium geometries have been calculated at the DFT/B3LYP/6-311G (d,p) level. Time-dependent density functional theory (TD-DFT) was used to calculate the excited states of compound 3. Changes in the solvent cause changes in the band intensities and in the positions of the band maxima (λmax). The excited state was identified and contributes to the electronic configurations, and it was characterized in terms of the relevant MOs. The theoretical spectra were computed using the Coulomb-attenuating method (CAM-B3LYP), using the basis set 6-311G (d,p) in the gas phase, and the polarizable continuum model (PCM) in dioxane and ethanol. The results indicate good agreement with the observed spectra.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号