首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Two-dimensional radiative transfer in a cylindrical geometry with anisotropic scattering
Authors:AL Crosbie  RL Dougherty
Institution:Thermal Radiative Transfer Group, Department of Mechanical and Aerospace Engineering, University of Missouri-Rolla, Rolla, MO 65401, U.S.A.
Abstract:Exact integral equations are derived describing the source function and radiative flux in a two-dimensional, radially infinite cylindrical medium which scatters anisotropically. The problem is two-dimensional and cylindrical because of axisymmetric loading. Radially varying collimated radiation is incident normal to the upper surface while the lower boundary has no radiation incident upon it. The scattering phase function is represented by a spike in the forward direction plus a series of Legendre polynomials. The two-dimensional integral equations are reduced to a one-dimensional form by separating variables for the case when the radial variation of the incident radiation is a Bessel function. The one-dimensional form consists of a system of linear, singular Fredholm integral equations of second kind. Other more complex boundary conditions are shown to be solvable by a superposition of this basic Bessel function case. Diffusely incident radiation is also considered.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号