Abstract: | Given a reaction-diffusion system which exhibits Turing’s diffusion-driven instability, the influence of unilateral obstacles of opposite sign (source and sink) on bifurcation and critical points is studied. In particular, in some cases it is shown that spatially nonhomogeneous stationary solutions (spatial patterns) bifurcate from a basic spatially homogeneous steady state for an arbitrarily small ratio of diffusions of inhibitor and activator, while a sufficiently large ratio is necessary in the classical case without unilateral obstacles. The study is based on a variational approach to a non-variational problem which even after transformation to a variational one has an unusual structure for which usual variational methods do not apply. |