首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Multi-point Optimization of Shock Control Bump with Constant-Lift Constraint Enhanced with Suction and Blowing for a Supercritical Airfoil
Authors:K Mazaheri  A Nejati
Abstract:Both shock control bump (SCB) and suction and blowing are flow control methods used to control the shock wave/boundary layer interaction (SWBLI) in order to reduce the resulting wave drag in transonic flows. A SCB uses a small local surface deformation to reduce the shock-wave strength, while suction decreases the boundary-layer thickness and blowing delays the flow separation. Here a multi-point optimization method under a constant-lift-coefficient constraint is used to find the optimum design of SCB and suction and blowing. These flow control methods are used separately or together on a RAE-2822 supercritical airfoil for a wide range of off-design transonic Mach numbers. The RANS flow equations are solved using Roe’s averages scheme and a gradient-based adjoint algorithm is used to find the optimum location and shape of all devices. It is shown that the simultaneous application of blowing and SCB (hybrid blowing/SCB) improves the average aerodynamic efficiency at off-design conditions by 18.2 % in comparison with the clean airfoil, while this increase is only 16.9 % for the hybrid suction/SCB. We have also studied the SWBLI and how the optimization algorithm makes the flow wave structure and interactions of the shock wave with the boundary layer favorable.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号