Abstract: | Random copolymers with high molecular weights of indene and p‐methylstyrene (pMeSt) were synthesized by cationic polymerization with trichloroacetic acid/tin tetrachloride in CH2Cl2 at low temperatures. When indene and pMeSt (1:1 v/v), for example, were polymerized at ?40 °C, both monomers were consumed at very similar rates to give a copolymer with high molecular weight [number‐average molecular weight (Mn): 8–9 × 104]. This is indeed quite unexpected behavior for the combination of these two monomers because pMeSt polymerized over 1000 times faster than indene in the homopolymerization under the reaction conditions previously described. The product copolymer of indene and pMeSt had a random monomer sequence in it that was confirmed by NMR analyses and thermal‐property measurements. In sharp contrast with pMeSt, styrene and p‐chlorostyrene, which have no electron‐donating groups on the phenyl ring, led to low molecular weight polymers (Mn < 10,000) in the copolymerization with indene (1:1 v/v). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2449–2457, 2002 |