首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nonlinear relaxation at first-order phase transitions: A Ginzburg-Landau theory including fluctuations
Authors:C Billotet  K Binder
Institution:(1) Theoretische Physik, Universität des Saarlandes, Im Stadtwald, D-6600 Saarbrücken 11, Federal Republic of Germany;(2) Present address: Institut für Festkörperforschung, Kernforschungsanlage Jülich GmbH, Postfach 1913, D-5170 Jülich 1, Federal Republic of Germany
Abstract:Kinetics of phase transitions are investigated in systems with nonconserved one-component order parameter (i.e., generalized time-dependent Ginzburg-Landau models ind dimensions). The correct static critical behavior as well as fluctuation effects on the kinetics are incorporated by a suitable adaptation of the theory on spinodal decomposition by Langer, Baron and Miller. Both the case of quenches from temperaturesT above to below the critical pointT c and the case of magnetic field changesDeltaH from positive to negative values are treated, and both time-dependent order parameter langm(tau)rang and structure factorS(q, tau) are obtained numerically ford=2, 3. In the case of quenches atH=0, we find that langm(tau)rangequiv0 andS(q, tau) —S(q, infin)prop exp(–tau 1/2/7.2) 
$$\tilde S(q\tau ^{ - 1/2} )$$
, withS(q, infin)propq –2. In the case of field changes we find that forH not exceeding some critical valueH * the system is trapped in a metastable state with infinite lifetime. In contrast to the meanfield-spinodal, the susceptibility does not seem to diverge atH *. These results are compared with other treatments, in particular the Monte Carlo simulations of kinetic Ising models by Binder and Müller-Krumbhaar. While our theory describes some properties of the metastable states reasonably,H * distinctly exceeds the observed limit of metastability. We argue that the present theory does not take into account nucleation fluctuations, and also fails to describe correctly the domain growth in the late stages of the relaxation. Contrary to Langer et al. we suggest that ldquouniversalityrdquo holds for nonlinear relaxation and spinodal decomposition nearT c .Supported in part by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 130
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号