首页 | 本学科首页   官方微博 | 高级检索  
     


A constrained optimization approach to solving certain systems of convex equations
Authors:Daniel Solow  Hantao Li
Affiliation:Department of Operations, Weatherhead School of Management, Case Western Reserve University, Cleveland, OH 44106, United States
Abstract:This research presents a new constrained optimization approach for solving systems of nonlinear equations. Particular advantages are realized when all of the equations are convex. For example, a global algorithm for finding the zero of a convex real-valued function of one variable is developed. If the algorithm terminates finitely, then either the algorithm has computed a zero or determined that none exists; if an infinite sequence is generated, either that sequence converges to a zero or again no zero exists. For solving n-dimensional convex equations, the constrained optimization algorithm has the capability of determining that the system of equations has no solution. Global convergence of the algorithm is established under weaker conditions than previously known and, in this case, the algorithm reduces to Newton’s method together with a constrained line search at each iteration. It is also shown how this approach has led to a new algorithm for solving the linear complementarity problem.
Keywords:Nonlinear programming   Convex programming   Nonlinear equations   Convex equations
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号