首页 | 本学科首页   官方微博 | 高级检索  
     


Light Promotes the Immobilization of U(VI) by Ferrihydrite
Authors:Yun Wang  Jingjing Wang  Zhe Ding  Wei Wang  Jiayu Song  Ping Li  Jianjun Liang  Qiaohui Fan
Affiliation:1.Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (Y.W.); (J.W.); (Z.D.); (W.W.); (J.S.); (J.L.); (Q.F.);2.Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou 730000, China;3.Key Laboratory of Petroleum Resources, Lanzhou 730000, China
Abstract:The environmental behaviors of uranium closely depend on its interaction with natural minerals. Ferrihydrite widely distributed in nature is considered as one main natural media that is able to change the geochemical behaviors of various elements. However, the semiconductor properties of ferrihydrite and its impacts on the environmental fate of elements are sometimes ignored. The present study systematically clarified the photocatalysis of U(VI) on ferrihydrite under anaerobic and aerobic conditions, respectively. Ferrihydrite showed excellent photoelectric response. Under anaerobic conditions, U(VI) was converted to U(IV) by light-irradiated ferrihydrite, in the form of UO2+x (x < 0.25), where •O2 was the dominant reactive reductive species. At pH 5.0, ~50% of U(VI) was removed after light irradiation for 2 h, while 100% U(VI) was eliminated at pH 6.0. The presence of methanol accelerated the reduction of U(VI). Under aerobic conditions, the light illumination on ferrihydrite also led to an obvious but slower removal of U(VI). The removal of U(VI) increased from ~25% to 70% as the pH increased from 5.0 to 6.0. The generation of H2O2 under aerobic conditions led to the formation of UO4•xH2O precipitates on ferrihydrite. Therefore, it is proved that light irradiation on ferrihydrite significantly changed the species of U(VI) and promoted the removal of uranium both under anaerobic and aerobic conditions.
Keywords:ferrihydrite   photocatalysis   U(VI/IV)   uranium peroxides   immobilization
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号