首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dendrimer-conjugated magnetic nanoparticles for removal of zinc (II) from aqueous solutions
Authors:Chih-Ming Chou  Hsing-Lung Lien
Institution:(1) Department of Civil and Environmental Engineering, National University of Kaohsiung, 811 Kaohsiung, Taiwan, Republic of China;
Abstract:Dendrimers are novel nanostructure materials that possess a unique three-dimensional molecular configuration. They have high adsorption capacities of heavy metals. Dendrimer-conjugated magnetic nanoparticles (Gn-MNPs) combining the superior adsorbent of dendrimers with magnetic nanoparticles (MNPs) have been developed for effective removal and recovery of Zn(II). In this study, the Gn-MNPs were synthesized, characterized, and examined as reusable adsorbents of Zn(II). Characterization conducted by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and elemental analysis revealed that dendrimers were successfully coated onto the surface of MNPs made of magnetite (Fe3O4). The pH effect studies indicate the Zn(II) adsorption with Gn-MNPs is a function of pH. The adsorption efficiency increases with increasing pH. At pH less than 3, Zn(II) is readily desorbed. Hence, the Gn-MNPs can be regenerated using the diluted HCl aqueous solution (0.1 M) where Zn(II) can be recovered in a concentrated form. It was found that the Gn-MNPs underwent 10 consecutive adsorption–desorption processes still retained the original removal capacity of Zn(II). The adsorption data were fitted well with both Langmuir and Freundlich isotherms. The maximum adsorption capacity determined by the Langmuir model is 24.3 mg/g at pH 7 and 25°C. A synergistic effect between the complexation reaction and the electrostatic interaction may account for the overall performance of Gn-MNPs.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号