首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Enhancement of transport of curcumin to brain in mice by poly(n-butylcyanoacrylate) nanoparticle
Authors:Min Sun  Yan Gao  Chenyu Guo  Fengliang Cao  Zhimei Song  Yanwei Xi  Aihua Yu  Aiguo Li  Guangxi Zhai
Institution:1. Department of Pharmaceutics, College of Pharmacy, Shandong University, 44 Wenhua Xilu, 250012, Jinan, China
Abstract:Curcumin, a widely used coloring agent and spice in food, has a potential in blocking brain tumor formation and curing Alzheimer’s disease. Due to the specific properties of blood–brain barrier (BBB), only traces of curcumin were transported across BBB. The aim of the present study was to design and characterize curcumin loaded polybutylcyanoacrylate nanoparticles (PBCN) coated with polysorbate 80, and to evaluate the effect of PBCN as a delivery system on carrying curcumin across BBB. Curcumin loaded nanoparticles were prepared by an anionic polymerization method, and they presented in a core–shell spherical shape under transmission electron microscopy, with an average diameter of 152.0 nm. The average drug loading was 21.1%. Physicochemical status of curcumin in the nanoparticles was confirmed with differential scanning colorimetry and Fourier transform infrared spectroscopy. The in vitro release behavior of drug from the nanoparticles was fitted to a double phase kinetics model. The studies of pharmacokinetic and bio-distribution to brain were conducted in mice after intravenous administration of the nanoparticle formulation at the dose of 5 mg/kg and curcumin solution at the dose of 10 mg/kg via the tail vein. The results showed that in plasma, the area under concentration–time curve (AUC0–∞) for curcumin loaded nanoparticles was greater than that for the control solution, moreover, the mean residence time of curcumin loaded nanoparticles was 14-fold that of the control solution. In brain, AUC0–∞ for curcumin loaded nanoparticles was 2.53-fold that for the control solution. In conclusion, the present study demonstrated that PBCN could enhance the transport of curcumin to brain and have a potential as a delivery system to cross the BBB.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号