首页 | 本学科首页   官方微博 | 高级检索  
     

焊缝超声相控阵检测数据深度学习降噪方法
引用本文:朱甜甜,刘建,宋波,桂生,廉国选. 焊缝超声相控阵检测数据深度学习降噪方法[J]. 应用声学, 2022, 41(1): 112-118
作者姓名:朱甜甜  刘建  宋波  桂生  廉国选
作者单位:中国科学院声学研究所声场声信息国家重点实验室,中国石油集团工程技术研究院,中国科学院声学研究所声场声信息国家重点实验室,中国科学院声学研究所声场声信息国家重点实验室,中国科学院声学研究所声场声信息国家重点实验室
基金项目:船舶建造焊缝质量数字化检测技术研究。
摘    要:超声相控阵检测技术在焊缝检测中具有广泛的应用.超声相控阵检测技术检测信号中常混入噪声导致检测成像时难以分辨真实的缺陷特征.这些噪声主要为无关的反射信号和局部相关的结构噪声,传统的超声图像降噪方法难以有效滤除这些噪声,且存在计算效率低、参数优化复杂等问题.该文提出了一种基于深度学习的焊缝超声相控阵检测技术检测S扫图像的降...

关 键 词:超声相控阵检测  焊缝检测  深度学习  降噪
收稿时间:2021-01-12
修稿时间:2022-01-03

Noise reduction method for weld PAUT detection data based on deep learning
ZHU Tiantian,LIU Jian,SONG Bo,GUI Sheng and LIAN Guoxuan. Noise reduction method for weld PAUT detection data based on deep learning[J]. Applied Acoustics(China), 2022, 41(1): 112-118
Authors:ZHU Tiantian  LIU Jian  SONG Bo  GUI Sheng  LIAN Guoxuan
Affiliation:State Key Laboratory of Acoustics,Institute of Acoustics,Chinese Academy of Sciences,Beijing,Cnpc Engineering Technology R D Company Limited,Beijing,State Key Laboratory of Acoustics,Institute of Acoustics,Chinese Academy of Sciences,Beijing,State Key Laboratory of Acoustics,Institute of Acoustics,Chinese Academy of Sciences,Beijing,State Key Laboratory of Acoustics,Institute of Acoustics,Chinese Academy of Sciences,Beijing
Abstract:Ultrasonic phased-array inspection technology (PAUT) has a wide range of applications in weld inspection, and the PAUT inspection signal is often mixed with noise, making it difficult to distinguish the true defect characteristics during inspection imaging. These noises are mainly irrelevant reflection signals and locally relevant structural noise, which are difficult to be effectively filtered out by traditional ultrasonic image noise reduction methods and have problems such as low computational efficiency and complex parameter optimization. In this paper, we propose a deep learning-based noise reduction method for S-sweep images of weld PAUT inspection, and remove the noise in S-sweep images by building a deep neural network noise reduction model. After experimental verification, the method can remove the noise in the S-sweep image of weld PAUT detection more effectively than the traditional noise reduction method, retain the image details of defects, and improve the computational efficiency, while avoiding the manual parameter optimization of S-sweep images with different noise levels.
Keywords:ultrasonic phased array testing   weld testing   deep learning   noise reduction
本文献已被 维普 等数据库收录!
点击此处可从《应用声学》浏览原始摘要信息
点击此处可从《应用声学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号