首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structural and electrical properties of core–shell structured GaP nanowires with outer Ga2O3 oxide layers
Authors:B-K Kim  H Oh  E-K Jeon  S-R Kim  J-R Kim  J-J Kim  J-O Lee  CJ Lee
Institution:(1) Department of Physics, Chonbuk National University, Jeonju, 561-756, Korea;(2) Advanced Material Division, Korea Research Institute of Chemical Engineering, Daejon, 305-600, Korea;(3) Department of Electrical Engineering, Korea University, Seoul, 136-713, Korea
Abstract:This paper presents a review of our current experimental research on GaP nanowires grown by a vapor deposition method. Their structural, electrical, opto-electric transport, and gas-adsorption properties are reviewed. Our structural studies showed that a GaP nanowire consisted of a core–shell structure with a single-crystalline GaP core and an outer Ga2O3 layer. The individual GaP nanowires exhibited n-type field effects. Their electron mobilities were in the range of about 6 to 22 cm2/V s at room temperature. When the nanowires were illuminated with an ultraviolet light source, an abrupt increase of conductance occurred resulting from carrier generation in the nanowire and de-adsorption of adsorbed OH- or O2 - ions on the Ga2O3 surface shell. Using an intrinsic Ga2O3 shell layer as a gate dielectric, top-gated GaP nanowire field-effect transistors were fabricated and characterized. Like other metal oxide nanowires, the carrier concentration and mobility of GaP nanowires were significantly affected by the surface molecular adsorption of OH or O2. The GaP nanowire devices were fabricated as sensors for NO2, NH3, and H2 gases by using a simple metal decoration technique. PACS 73.63.-b; 72.80.Ey; 85.35.-p
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号