首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Flame retarding polymer nanocomposites: Synergism, cooperation, antagonism
Authors:Menachem Lewin
Institution:Polymer Research Institute and Department of Chemical and Biological Science, Polytechnic Institute of New York University, 6 Six MetroTech Center, Brooklyn, NY 11201, USA
Abstract:Three systems of FR treatments of polyamide 6 with conventional flame retarding additives in the absence and in the presence of nanoparticles are discussed: I. ammonium sulfamate (AS) and dipentaerythritol (Di) II. melamine cyanurate (MC) III. pentabromobenzyl acrylate in the monomeric (PMA) and the polymeric (PPA) form. Depending on the concentration of the nanoparticles; synergism, antagonism, and cooperation in flame retardancy as well as in mechanical properties are observed. Cooperation between the OMMT in the concentration range of 0.5-1.0 wt% and the FR in all three systems is observed. The decrease in PHRR (ΔPHRR) is different for the three systems. In system III the brominated FR behaves similarly to OMMT with respect to ΔPHRR. The interaction between the molten polymeric matrix and the nanoparticles increases the viscosity in all three systems, which slows down the supply of the flame retarding moieties to the flame and lowers the FR rating, as measured by the UL-94 and OI tests. A new approach for assessing the viscosity of the pyrolyzing nanocomposite is presented by determining the size and mass of the drops formed during the UL-94 test. Dispersion of the nanoparticles in the polymer decreases the HRR and MRR and decreases the UL-94, OI ratings, and the mechanical properties, as evidenced by the different behavior of OMMT and Na+MMT. The time of ignition decreases markedly by the addition of the nanoparticles, due to the low thermal conductivity and heat transfer of the protective barrier on the surface of the pyrolyzing nanocomposite in the pre-ignition phase. A possibility of restoring the high FR rating in the presence of higher concentrations of nanoparticles is indicated. The significance of the results obtained for the future of the use of nanoparticles in FR is discussed.
Keywords:Flame retarding PA6  Synergism  Time of ignition  Migration  Rate of heat release  Pentabromobenzyl acrylate
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号