首页 | 本学科首页   官方微博 | 高级检索  
     


Smoke and hydrocarbon yields from fire retarded polymer nanocomposites
Authors:Anna A. Stec  Jennifer Rhodes
Affiliation:Centre for Fire and Hazards Science, University of Central Lancashire, Preston, Lancashire PR1 2HE, UK
Abstract:Polypropylene (PP) and Polyamide 6 (PA6) samples, with and without fire retardants (FR) (ammonium polyphosphate in PP, and a mixture of organic aluminium phosphinate and melamine polyphosphate (OP 1311) in PA 6) and nanofillers (NC) were burned under different fire conditions in order to compare their toxic product yields. Fire effluents (CO, smoke and hydrocarbons) were generated using a steady state tube furnace (BS 7900, ISO TS 19700) for the separate materials and fire retarded and nanocomposite modifications of these materials under flaming conditions. Under well-ventilated conditions yields of carbon monoxide (CO) for all PP samples are similar, whereas for PA6 samples much higher yields of CO for PA6 + FR and PA6 + NC are observed. The highest yields of CO occur for both pure polymers in under-ventilated fire conditions when fire retardant and nanoclay are combined together. For PP the smoke is fairly independent of fire condition, but the PP + FR + NC shows less agglomeration. For PA6 the sample containing OP 1311 shows consistently higher smoke yields. For hydrocarbon yields similar effects are observed for both PP and PA6 polymers; the highest yields are for PA6 + NC, except under-ventilated fires where PA6 + FR produce the most; for PA6 + FR + NC samples the lowest yields are observed, compared to either NC or FR formulations.
Keywords:Fire   Smoke   Hydrocarbon   Soot   Fire retardant   Nanocomposites
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号