首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ternary-organic photovoltaics with J71 as donor and two compatible nonfullerene acceptors
Authors:Yue Wang  Chunyu Xu  Chong Wang  Yutong Yan  Qianqian Sun  Xiaoling Ma  Fujun Zhang
Institution:1. Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing, P. R. China;2. Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan, P. R. China
Abstract:Recombining the advantages on photovoltaic parameters of two binary-organic photovoltaics (OPVs) into one ternary cell is an efficient strategy for selecting materials, in addition to the absorption spectra complementary among the used materials. The binary-OPVs with J71:BTP-4F-12 exhibit a power conversion efficiency (PCE) of 11.70%, along with a short-circuit-current-density (JSC) of 23.61 mA cm−2, an open-circuit-voltage (VOC) of 0.841 V and a fill factor (FF) of 58.99%. Although the relatively low PCE of 10.92% and JSC of 16.59 mA cm−2 are achieved in J71:ITIC-based binary-OPVs, the VOC of 0.935 V and FF of 70.40% are impressive compared with J71:BTP-4F-12-based OPVs. Optimal ternary-OPVs are achieved with J71:BTP-4F-12:ITIC as active layers by weight ratio of 1:0.48:0.72, delivering a markedly increased PCE of 13.05% with a VOC of 0.903 V, a JSC of 21.27 mA cm−2 and a FF of 68.20%. An over 11.5% PCE improvement is obtained by recombining the advantages of binary-OPVs into ternary-OPVs with ITIC as photon harvesting reinforcing agent and morphology regulator. The good compatibility between BTP-4F-12 and ITIC provides large room to well optimize their relative content for achieving the well balanced three key photovoltaic parameters of ternary-OPVs.
Keywords:alloyed state  organic photovoltaics  power conversion efficiency  ternary strategy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号