首页 | 本学科首页   官方微博 | 高级检索  
     检索      


In vitro evolution of ligands to the membrane protein caveolin
Authors:Majumdar Sudipta  Hajduczki Agnes  Vithayathil Rosemarie  Olsen Tivoli J  Spitler Ryan M  Mendez Aaron S  Thompson Travis D  Weiss Gregory A
Institution:Department of Chemistry, University of California, Irvine, California 92697, USA.
Abstract:Membrane proteins comprise a third of the human genome, yet present challenging targets for reverse chemical genetics. For example, although implicated in numerous diseases including multiple myeloma, the membrane protein caveolin-1 appears to offer a poor target for the discovery of synthetic ligands due to its largely unknown structure and insolubility. To break this impasse and identify new classes of caveolae controlling lead compounds, we applied phage-based, reverse chemical genetics for the discovery of caveolin-1 ligands derived from the anti-HIV therapeutic T20. Substitution of homologous residues into the T20 sequence used a process analogous to medicinal chemistry for the affinity maturation to bind caveolin. The resultant caveolin-1 ligands bound with >1000-fold higher affinity than wild-type T20. Two types of ELISAs and isothermal titration calorimetry (ITC) measurements demonstrated high affinity binding to caveolin by the T20 variants with K(d) values in the 150 nM range. Microscopy experiments with the highest affinity caveolin ligands confirmed colocalization of the ligands with endogenous caveolin in NIH 3T3 cells. The results establish the foundation for targeting caveolin and caveolae formation in living cells.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号