首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamic control of 3D chemical profiles with a single 2D microfluidic platform
Authors:Kim YongTae  Joshi Sagar D  Davidson Lance A  LeDuc Philip R  Messner William C
Institution:Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, USA.
Abstract:Dynamic control of three-dimensional (3D) chemical patterns with both high precision and high speed is important in a range of applications from chemical synthesis, flow cytometry, and multi-scale biological manipulation approaches. A central challenge in controlling 3D chemical patterns is the inability to create rapidly tunable 3D profiles with simple and direct approaches that avoid complicated microfabrication. Here, we present the ability to rapidly and precisely create 3D chemical patterns using a single two-dimensional (2D) microfluidic platform. We are not only able to create these 3D patterns, but can rapidly switch from one mode to another (e.g. from a focused to a defocused pattern in less than 1 second) via simple changes in inlet pressures. A feedback control scheme with a pressure modulation mechanism controls the pressure changes. In addition to experiments, we conducted computational simulations for guiding the optimum design of the channels as well as revealing the sensitivity of the patterns to the channel dimensions; these simulations have high experimental correlations. We also show that microvortices play an important role in creating these tunable 3D patterns in this microfluidic platform. We quantitatively determine the degrees of the focused patterns in 2D cross-sections using a focus index with a 2D Gaussian function. Our integrated approach combining feedback control with simple microfluidics will be useful for researchers in diverse disciplines including chemistry, engineering, physics, and biology.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号