首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dissociative and associative attachment of NO to iron clusters
Authors:Gutsev G L  Mochena M D  Johnson E  Bauschlicher C W
Institution:Department of Physics, Florida A&M University, Tallahassee, Florida 32307, USA. gennady.gutsev@famu.edu
Abstract:Electronic and geometrical structures of iron clusters with associative (FeNO, Fe2NO, Fe3NO, Fe4NO, Fe5NO, and Fe6NO) and dissociative (OFeN, OFe2N, OFe3N, OFe4N, OFe5N, and OFe6N) attachments of NO, as well as the corresponding singly negatively and positively charged ions, are computed using density functional theory with generalized gradient corrections. Both types of isomers are found to be stable and no spontaneous dissociation was observed during the geometry optimizations. The ground states correspond to dissociative attachment of NO for all iron clusters Fe(n), except for Fe and Fe+. All of the OFe(n)N clusters have ferrimagnetic ground states, except for OFe2N, OFe2N-, OFe4N, and OFe4N-, which prefer the ferromagnetic coupling. In the ferrimagnetic states, the excess spin density at one iron atom couples antiferromagnetically to the excess spin densities of all other iron atoms. Relative to the high-spin Fe(n) ground state, the lowest energy ferrimagnetic state quenches the total magnetic moments of iron clusters by 7, which is to be compared with a reduction in the magnetic moment of one in the lowest energy ferromagnetic states. Dissociation of NO on the iron clusters has a pronounced impact on the energetics of reactions; the Fe(n)NO+CO-->Fe(n)N+CO2 channels are exothermic while the OFe6N+CO--> Fe6N+CO2 channels are nearly thermoneutral.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号