首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Switch-over in photochemical reaction mechanism from hydrogen abstraction to exciplex-induced quenching: interaction of triplet-excited versus singlet-excited acetone versus cumyloxyl radicals with amines
Authors:Pischel U  Nau W M
Institution:Departement Chemie, Universit?t Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
Abstract:The fluorescence and phosphorescence quenching of acetone by 13 aliphatic amines has been investigated. The bimolecular rate constants lie in the range of 10(8)-10(9) M(-1) s(-1) for singlet-excited acetone and 10(6)-10(8) M(-1) s(-1) for the triplet case. The rate data indicate that a direct hydrogen abstraction process dominates for triplet acetone, while a charge-transfer mechanism, namely, exciplex-induced quenching, becomes important for singlet-excited acetone. Pronounced stereoelectronic effects toward H abstraction, e.g., for 1,4-diazabicyclo2.2.2]octane (DABCO), and significant steric hindrance effects, e.g., for N,N-diisopropyl-3-pentylamine, are observed. A negative activation energy (E(a) = -0.9 +/- 0.2 kcal mol(-1) for triethylamine and DABCO) and the absence of a significant solvent effect on the fluorescence quenching of acetone are indicative of the involvement of exciplexes. Full electron transfer can be ruled out on the basis of the low reduction potential of acetone, which was found to lie below -3.0 V versus SCE. The participation of H abstraction for triplet acetone is corroborated by the respective quenching rate constants, which resemble the reaction rate constants for cumyloxyl radicals. The latter were measured for all 13 amines and showed also a dependence on the electron donor properties of the amines. It is suggested that the H abstraction proceeds directly and not through an exciplex or ion pair. Further, abstraction from N-H bonds in addition to alpha C-H bonds has been corroborated as a significant pathway for excited acetone. Product studies and quantum yields for photoreduction of singlet- and triplet-excited acetone by triethylamine (8% for S(1) versus 24% for T(1)) are in line with the suggested mechanisms of quenching through an exciplex and photoreduction through direct H abstraction.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号