首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Continuous-time limit of repeated interactions for a system in a confining potential
Authors:Julien Deschamps
Institution:Università degli Studi di Genova, Dipartimento di Matematica, Via Dodecaneso 35, 16146 Genova, Italy
Abstract:We study the continuous-time limit of a class of Markov chains coming from the evolution of classical open systems undergoing repeated interactions. This repeated interaction model has been initially developed for dissipative quantum systems in Attal and Pautrat (2006) and was recently set up for the first time in Deschamps (2012) for classical dynamics. It was particularly shown in the latter that this scheme furnishes a new kind of Markovian evolutions based on Hamilton’s equations of motion. The system is also proved to evolve in the continuous-time limit with a stochastic differential equation. We here extend the convergence of the evolution of the system to more general dynamics, that is, to more general Hamiltonians and probability measures in the definition of the model. We also present a natural way to directly renormalize the initial Hamiltonian in order to obtain the relevant process in a study of the continuous-time limit. Then, even if Hamilton’s equations have no explicit solution in general, we obtain some bounds on the dynamics allowing us to prove the convergence in law of the Markov chain on the system to the solution of a stochastic differential equation, via the infinitesimal generators.
Keywords:Stochastic differential equations  Relativistic diffusion processes  Infinitesimal generators  Classical open systems  Hamiltonian systems  Repeated interactions
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号