首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamics of interconversion of enantiomers in chiral separation systems: a novel approach for determination of all rate constants involved in the interconversion
Authors:Dubský Pavel  Tesarová Eva  Gas Bohuslav
Institution:Department of Physical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic.
Abstract:When enantiomers separated by chromatography or capillary electrophoresis undergo interconversion reaction (enantiomerization) during the separation, it leads to a typical detection pattern: two individual peaks of the separated enantiomers are connected with a plateau consisting of a mixture of both separated enantiomers. We propose a separation method for determination of all individual rate constants (or inversion barriers) of the interconversion. The method enables to distinguish which part of interconversion takes place in the free (unbound) form of the analyte and which part in the complexed (bound) form. Further, we propose a complete dynamic model of capillary electrophoresis of interconverting enantiomers based on solving a complete set of continuity equations for all constituents of the separation system together with complexation and acid-base equilibria. This allows a simulation of both linear and nonlinear mode of separation and understanding all processes taking place in such enantioseparation systems. We demonstrate the applicability of the method on determination of the rate constants of interconversion of oxazepam enantiomers separated in systems with charged cyclodextrin chiral selectors.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号