首页 | 本学科首页   官方微博 | 高级检索  
     


Time-resolved studies on the photoisomerization of a phenylene-silylene-vinylene type compound in its first singlet excited state
Authors:G. Burdzinski  M. Majchrzak  B. Marciniak
Affiliation:a Faculty of Physics, Adam Mickiewicz University, Poznan, Poland
b Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
c Radiation Laboratory, University of Notre Dame, Notre Dame, IN, USA
Abstract:In femtosecond laser-flash photolysis experiments, the first singlet excited state of trans-ST, ((E,E)-{1,4-bis(2-dimethylphenylsilyl)ethenyl}benzene) showed a strong S1(π,π?)-Sn absorption band at 540 nm in acetonitrile and at 550 nm in hexane. The lifetime of this state was determined to be 13.2±2.0 and 11.1±1.5 ps, respectively. Intersystem crossing was shown not to be a principal route for the deactivation of this S1 state of trans-ST. Evidence for this conclusion involved two complementary nanosecond laser-flash photolysis experiments. In one experiment involving direct excitation, no transient absorption spectrum was detected in the 350-650 nm spectral range. Yet, in the second experiment, on triplet sensitization, using xanthone, a transient absorption at 400 nm was tentatively assigned to the triplet state absorption of trans-ST. Photoisomerization was monitored in nanosecond time-resolved bleaching experiments. From these experiments the trans-cis photoisomerization quantum yield was determined to be 0.23 on direct trans-ST excitation. In a xanthone-sensitized stationary-state excitation experiment, the trans-cis isomerization quantum yield was determined to be 0.32. The main deactivation route of trans-ST in its S1 state is repopulation of the ground state directly through internal conversion or with the intermediacy of conformers with twisted geometry.
Keywords:Trans-cis photoisomerization   Transient absorption   Triplet sensitization   The first singlet excited state   2-dimethylphenylsilylethenylbenzene
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号