Abstract: | The reflection of three-dimensional(3D) plane waves in a highly anisotropic(triclinic) medium under the context of generalized thermoelasticity is studied. The thermoelastic nature of the 3D plane waves in an anisotropic medium is investigated in the perspective of the three-phase-lag(TPL), dual-phase-lag(DPL), Green-Naghdi-III(GNIII), Lord-Shulman(LS), and classical coupled(CL) theories. The reflection coefficients and energy ratios for all the reflected waves are obtained in a mathematical form. The rotational effects on the reflection characteristics of the 3D waves are discussed under the context of generalized thermoelasticity. Comparative analyses for the reflection coefficients of the waves among these generalized thermoelastic theories are performed. The energy ratios for each of the reflected waves establish the energy conservation law in the reflection phenomena of the plane waves. The highly anisotropic materials along with the rotation may have a significant role in the phenomenon of the reflection behavior of the 3D waves. Numerical computations are performed for the graphical representation of the study. |