首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Random cluster models for icosahedral phase alloys
Authors:J L Robertson  S C Moss
Institution:(1) Department of Physics, Science and Research Bldg. #1, University of Houston, 77204-5504 Houston, TX, USA;(2) Present address: Research Reactor Building 235, NIST, 20899 Gaithersburg, MD, USA
Abstract:We present results on computer generated random cluster models for icosahedral phase alloys. By the application of physically motivated constraints on the local atomic cluster configurations, the model achieves long range translational order comparable to, or greater than, that found in simple icosahedral alloys such asi-AlMnSi andi-AlLiCu. The parallel and perpendicular space structures are explored in some detail including a comparison with experimental powder diffraction patterns and an examination of the phason fluctuations. The latter are shown to decrease markedly with increased constraint on the local environment, but the remaining phason strain would seem finally not to vanish with increasing model size. Our model is compared with other cluster models for quasicrystalline materials and is shown to possess a density and connectivity very close to those of Elser's (best) model and those predicted by Henley for a canonical tiling. The relation of this model to recently discovered icosahedral phase alloys with resolution limited diffraction peak widths, which are essentially free of phason strain, is also discussed.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号