首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The d4/d3 redox pairs [MX(CO)(eta-RC[triple bond, length as m-dash]CR)Tp']z (z=0 and 1): structural consequences of electron transfer and implications for the inverse halide order
Authors:Adams Christopher J  Bartlett Ian M  Carlton Susannah  Connelly Neil G  Harding David J  Hayward Owen D  Orpen A Guy  Patron Elena  Ray Christopher D  Rieger Philip H
Institution:School of Chemistry, University of Bristol, Bristol, UK BS8 1TS.
Abstract:The d4 halide complexes MX(CO)(eta-RCtriple bond, length as m-dash]CR)Tp'] {X=F, Cl, Br or I; R=Me or Ph; M=Mo or W; Tp'=hydrotris(3,5-dimethylpyrazolyl)borate} undergo one-electron oxidation to the d3 monocations MX(CO)(eta-RCtriple bond, length as m-dash]CR)Tp']+, isolable for M=W, R=Me. X-Ray structural studies on the redox pairs WX(CO)(eta-MeCtriple bond, length as m-dash]CMe)Tp']z (X=Cl and Br, z=0 and 1), the ESR spectra of the cations WX(CO)(eta-RCtriple bond, length as m-dash]CR)Tp']+ (X=F, Cl, Br or I; R=Me or Ph), and DFT calculations on WX(CO)(eta-MeCtriple bond, length as m-dash]CMe)Tp']z (X=F, Cl, Br and I; z=0 and 1) are consistent with electron removal from a HOMO (of the d4 complexes) which is pi-antibonding with respect to the W-X bond, pi-bonding with respect to the W-C(O) bond, and delta-bonding with respect to the W-Calkyne bonds. The dependence of both oxidation potential and nu(CO) for MX(CO)(eta-RCtriple bond, length as m-dash]CR)Tp'] shows an inverse halide order which is consistent with an ionic component to the M-X bond; the small size of fluorine and its closeness to the metal centre leads to the highest energy HOMO and the lowest oxidation potential. In the cations MX(CO)(eta-RCtriple bond, length as m-dash]CR)Tp']+ electronegativity effects become more important, leading to a conventional order for Cl, Br and I. However, high M-F pi-donation is still facilitated by the short M-F distance.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号