首页 | 本学科首页   官方微博 | 高级检索  
     


Metallocene–methylaluminoxane catalysts for olefin polymerizations. III. Reduction of η5-cyclopentadienyl trichlorides of titanium and zirconium
Authors:Ulrich Bueschges  James C. W. Chien
Abstract:The reactions occurring between the components of metallocene and methylaluminoxane (MAO) catalyst leading to the reduction of the former were studied by electron paramagnetic resonance (EPR). At low Al/Zr ratios, CpZrCl3 (Cp = η5-cyclopentadienyl) was reduced to simple trivalent Zr species (g = 1.998, a(91Zr) = 12.3 G) without other superhyperfine splittings. At higher Al/Zr ratios the reactions proceed further to form two CpZr(III) hydrides (g = 1.991, a(H) = 5.5 G; and g = 2.00, a(H) = 3 G). Two CpTi(III) hydrides were also produced by the reaction of MAO with CpTiCl3 (g = 1.989, a(H) = 7.4 G, a(Ti) = 8 G; and, g = 1.995, a(H) = 4.5 G, a(Ti) = 8 G). In the case of Cp*TiCl3 (Cp* = η5-pentamethyl cyclopentadienyl) initially a multitude of paramagnetic species were formed. After long reaction time the final products show EPR features consistent with two η3: η4-(1,2,3-trimethyl-4,5-dimethylene cyclopentadienyl)hydrido Ti(III) species: the abundant one with g = 1.999, (H, sextet) = 9.5 G, a(Ti) = 9.5 G, and a weaker one of g = 1.975, a(H) = 4.8 G. All the five protons of these species and as well as those in the Cp hydrido complexes of Ti and Zr undergo facile H? D exchanges with D2. MAO is important in the formation of these hydrides because they are not formed by trimethyl aluminum reduction. The presence of tetrahydrofuran suppresses the hydride formation. The possible structures for the hydrido species and reactions producing them are discussed.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号