Abstract: | The thermal diffusion coefficient DT has been obtained for 17 polymer-solvent combinations, each of them spanning a range of polymer molecular weights, using thermal field-flow fractionation. The polymers examined include polystyrene, poly(alpha-methyl)styrene, polymethylmethacrylate, and polysioprene. The solvents include benzene, toluene, ethylbenzene, tetrahydrofuran, methylethylketone, ethylacetate, and cyclohexane. Although DT was confirmed as essentially independent of polymer molecular weight, it was found to vary substantially with the chemical composition of polymer and solvent. The results were used to evaluate several thermal diffusion theories; the agreement with theory was generally found to be unsatisfactory. Attempts were then made to correlate the measured thermal diffusion coefficients with various physicochemical parameters of the polymers and solvent. A good correlation was found in which DT increases with the thermal conductivity difference of the polymer and solvent and varies inversely with the activation energy of viscous flow of the solvent. |