首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Laser induction hybrid rapid cladding of WC particles reinforced NiCrBSi composite coatings
Authors:Shengfeng Zhou  Xiaoqin Dai
Institution:a School of Material Science and Engineering, Nanchang Hangkong University, Fenghenan Road 696, Nanchang, Jiangxi 330063, PR China
b School of Information Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, PR China
Abstract:In order to investigate the microstructure characteristics and properties of Ni-based WC composite coatings containing a relatively large amount of WC particles by laser induction hybrid rapid cladding (LIHRC) and compare to the individual laser cladding without preheating, Ni60A + 35 wt.% WC composite coatings are deposited on A3 steel plates by LIHRC and the individual laser cladding without preheating. The composite coating produced by the individual laser cladding without preheating exhibits many cracks and pores, while the smooth composite coating without cracks and pores is obtained by LIHRC. Moreover, the cast WC particles take on the similar dissolution characteristics in Ni60A + 35 wt.% WC composite coatings by LIHRC and the individual laser cladding without preheating. Namely, the completely dissolved WC particles interact with Ni-based alloy solvent to precipitate the blocky and herringbone carbides, while the partially dissolved WC particles still preserve the primary lamellar eutectic structure. A few WC particles are split at the interface of WC and W2C, and then interact with Ni-based alloy solvent to precipitate the lamellar carbides. Compared with the individual laser cladding without preheating, LIHRC has the relatively lower temperature gradient and the relatively higher laser scanning speed. Therefore, LIHRC can produce the crack-free composite coating with relatively higher microhardness and relatively more homogeneous distribution of WC particles and is successfully applied to strengthen the corrugated roller, showing that LIHRC process has a higher efficiency and good cladding quality.
Keywords:Laser induction hybrid rapid cladding (LIHRC)  Carbides  Cast WC particles  Individual laser cladding  Crack-free
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号