首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Theoretical calculation of the temperature coefficient of surface excess entropy of pure liquid metals
Authors:Ahmed H Ayyad
Institution:Department of Chemistry, Faculty of Science and Technology, Hebron University, P.O. Box 40, Hebron, West Bank, Palestine
Abstract:The temperature coefficient of surface excess entropy dSs/dT of pure liquid metals (Al, Ga and Bi) has been calculated in the framework of Skapski's nearest-neighbor interaction-broken-bond model. It is found that this coefficient varies by 47.2%, 69% and 85% for pure liquids Al, Bi and Ga, respectively, in the temperature range between the melting temperature Tm and Tm + 400 K. The value of the coefficient for pure liquid Ga is an order of magnitude larger than that of Al and Bi. The largest increase in dSS/dT with temperature occurs in the first 100 K away from Tm, being the largest for liquid Ga which is about 43%. This variation is experimentally inaccessible and therefore lacking in the literature and has never been reported.
Keywords:Liquid metals  Surface excess entropy  Temperature coefficient
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号